Modeling the Mechanism of Coagulum Formation in Dispersions
نویسندگان
چکیده
The stability of colloidal dispersions is of crucial importance because the properties of dispersions are strongly affected by the degree of coagulation. Whereas the coagulation kinetics for quiescent (i.e., nonstirred) and diluted systems is well-established, the behavior of concentrated dispersions subjected to shear is still not fully understood. We employ the discrete element method (DEM) for the simulation of coagulation of concentrated colloidal dispersions. Normal forces between interacting particles are described by a combination of the Derjaguin, Landau, Verwey, and Overbeek (DLVO) and Johnson, Kendall, and Roberts (JKR) theories. We show that, in accordance with the expectations, the coagulation behavior depends strongly on the particle volume fraction, the surface potential, and the shear rate. Moreover, we demonstrate that the doublet formation rate is insufficient for the description of the coagulation kinetics and that the detailed DEM model is able to explain the autocatalytic nature of the coagulation of stabilized dispersions subjected to shear. With no adjustable parameters we are able to provide semiquantitative predictions of the coagulation behavior in the high-shear regions for a broad range of particle volume fractions. The results obtained using the DEM model can provide valuable guidelines for the operation of industrial dispersion processes.
منابع مشابه
CFD modeling for selective formation of propylene from methanol over synthesized Mn-substituted MFI metallosilicate catalyst
The high silica Mn-substituted MFI metallosilicate catalyst with Si/Al molar ratio of 220 and Si/Mn molar ratio of 50 was successfully synthesized by hydrothermal method. The catalyst sample was appropriately characterized by XRD, FE-SEM, EDX and BET techniques. The Mn-substituted MFI metallosilicate has not been reported as the potential catalyst for the methanol to propylene (MTP) reaction. T...
متن کاملImproving Dissolution of Meloxicam Using Solid Dispersions
Meloxicam is a poorly water soluble non steroidal anti-inflammatory drug and antipyretic agent. The aim of the present work was to investigate the effect of different types of carriers on in vitro dissolution of meloxicam. Meloxicam solid dispersions were prepared by physical mixing, co-grinding and solvent evaporation methods with polyethylene glycol (PEG) 6000. The effect of solubilization by...
متن کاملImproving Dissolution of Meloxicam Using Solid Dispersions
Meloxicam is a poorly water soluble non steroidal anti-inflammatory drug and antipyretic agent. The aim of the present work was to investigate the effect of different types of carriers on in vitro dissolution of meloxicam. Meloxicam solid dispersions were prepared by physical mixing, co-grinding and solvent evaporation methods with polyethylene glycol (PEG) 6000. The effect of solubilization by...
متن کاملCombined Three Mechanisms Models for Membrane Fouling during Microfiltration
Five new mathematical triple fouling models were developed to explore the flux decline behavior during the microfiltration. The first model was developed by the assumption of the successive effects of standard mechanism, intermediate pore blockage and cake formation by using the standard blocking flux expression in the model calculations. The second and third models also obtained by the success...
متن کاملInfluence of modeling material on undercut slope failure mechanism
A series of physical modeling tests were conducted by means of a beam type geotechnical centrifuge machine in order to investigate the drainage impact on the slope failure mechanism under centrifugal acceleration. Meanwhile, the phenomenon of stress redistribution in undercut slopes and the formation of arching effect were studied. For this purpose, a poorly graded sandy soil (Silica sand No. 6...
متن کامل